Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change
نویسندگان
چکیده
Without new innovations, present rates of increase in yields of food crops globally are inadequate to meet the projected rising food demand for 2050 and beyond. A prevailing response of crops to rising [CO2 ] is an increase in leaf area. This is especially marked in soybean, the world's fourth largest food crop in terms of seed production, and the most important vegetable protein source. Is this increase in leaf area beneficial, with respect to increasing yield, or is it detrimental? It is shown from theory and experiment using open-air whole-season elevation of atmospheric [CO2 ] that it is detrimental not only under future conditions of elevated [CO2 ] but also under today's [CO2 ]. A mechanistic biophysical and biochemical model of canopy carbon exchange and microclimate (MLCan) was parameterized for a modern US Midwest soybean cultivar. Model simulations showed that soybean crops grown under current and elevated (550 [ppm]) [CO2 ] overinvest in leaves, and this is predicted to decrease productivity and seed yield 8% and 10%, respectively. This prediction was tested in replicated field trials in which a proportion of emerging leaves was removed prior to expansion, so lowering investment in leaves. The experiment was conducted under open-air conditions for current and future elevated [CO2 ] within the Soybean Free Air Concentration Enrichment facility (SoyFACE) in central Illinois. This treatment resulted in a statistically significant 8% yield increase. This is the first direct proof that a modern crop cultivar produces more leaf than is optimal for yield under today's and future [CO2 ] and that reducing leaf area would give higher yields. Breeding or bioengineering for lower leaf area could, therefore, contribute very significantly to meeting future demand for staple food crops given that an 8% yield increase across the USA alone would amount to 6.5 million metric tons annually.
منابع مشابه
Polley: Crop Responses to Global Change
agriculture is to feed the world’s burgeoning population, yields of water-limited crops must be improved substanYield of water-limited crops is determined by crop water use and tially. Efforts to accomplish this have concentrated on by plant water use efficiency, each of which will be affected by the anticipated rise in atmospheric carbon dioxide (CO2) concentration increasing the fraction of a...
متن کاملSimulation of rice production under climate change scenarios in the Southern coasts of Caspian Sea
Climate change has direct and indirect consequences on crop production and food security. Agriculture and cropproduction is one of the factors which depend on the weather conditions and it provides the human requirements inmany aspects. The objective of this study is to assess the impacts of future climatic change on irrigated rice yieldusing the CERES-Rice model in the Southern Coast of Caspia...
متن کاملFACE-ing the global change: Opportunities for improvement in photosynthetic radiation use efficiency and crop yield
The earth is rapidly changing through processes such as rising [CO2], [O3], and increased food demand. By 2050 the projected atmospheric [CO2] and ground level [O3] will be 50% and 20% higher than today. To meet future agricultural demand, amplified by an increasing population and economic progress in developing countries, crop yields will have to increase by at least 50% by the middle of the c...
متن کاملConditions Current Crop Yields Climatic Change Scenario I Altered Biophysical Conditions Altered Crop Yields Step
Increasing concentrations of atmospheric C O 2 and other greenhouse gases are expected to contribute to a global warming. This paper examines the potential implications of a climatic change corresponding to a doubling of atmospheric concentrations of CO2 on crop production opportunities throughout Ontario, a major food producing region in Canada. The climate is projected to become warmer and dr...
متن کاملFood security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide.
Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 23 شماره
صفحات -
تاریخ انتشار 2017